stability of the quadratic functional equation

Authors

  • E. Elqorachi Department of Mathematics, Faculty of Sciences, University Ibn Zohr, Agadir, Morocco
  • Th. M. Rassias Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780, Athens Greece
  • Y. Manar Department of Mathematics, Faculty of Sciences, University Ibn Zohr, Agadir, Morocco
Abstract:

In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applications of the results for the asymptotic behavior of thegeneralized quadratic functional equation are provided.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

stability of the quadratic functional equation

in the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{e}$$ isgiven where $sigma$ is an involution of the normed space $e$ and$k$ is a fixed positive integer. furthermore we investigate thehyers-ulam-rassias stability of the functional equation. thehyers-ulam stability on unbounded domains is also studied.applic...

full text

Intuitionistic fuzzy stability of a quadratic and quartic functional equation

In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.

full text

On the Stability of Quadratic Functional Equation

In this paper the stability of quadratic functional equation, f(xy)+f(xy)=2f(x)+2f(y) on class of groups is obtained and also prove that quadratic functional equation may not be stable in any abelian group.

full text

On the Stability of Quadratic Functional Equation

Aoki,T. , (1950) "On stability of the linear transformation in Banach spaces," Journal of the Mathematical Society of Japan, 2,64-66 Chang, S. and Kim,H. M. , (2002), On the Hyer-Ulam stability of a quadratic functional equations, J. Ineq. Appl. Math. , 33, 1-12. Chang,S. , Lee,E. H. and Kim,H. M. , (2003)On the Hyer-Ulam Rassias stability of a quadratic functional equations, Math. In...

full text

On the Stability of Quadratic Functional Equation

Aoki,T. , (1950) "On stability of the linear transformation in Banach spaces," Journal of the Mathematical Society of Japan, 2,64-66 Chang, S. and Kim,H. M. , (2002), On the Hyer-Ulam stability of a quadratic functional equations, J. Ineq. Appl. Math. , 33, 1-12. Chang,S. , Lee,E. H. and Kim,H. M. , (2003)On the Hyer-Ulam Rassias stability of a quadratic functional equations, Math. In...

full text

On the Stability of Quadratic Functional Equation

Aoki,T. , (1950) "On stability of the linear transformation in Banach spaces," Journal of the Mathematical Society of Japan, 2,64-66 Chang, S. and Kim,H. M. , (2002), On the Hyer-Ulam stability of a quadratic functional equations, J. Ineq. Appl. Math. , 33, 1-12. Chang,S. , Lee,E. H. and Kim,H. M. , (2003)On the Hyer-Ulam Rassias stability of a quadratic functional equations, Math. In...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 2

pages  26- 35

publication date 2010-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023